Functional Connectivity Differences of the Subthalamic Nucleus Related to Parkinson's Disease.
نویسندگان
چکیده
A typical feature of Parkinson's disease (PD) is pathological activity in the subthalamic nucleus (STN). Here, we tested whether in patients with PD under dopaminergic treatment functional connectivity of the STN differs from healthy controls (HC) and whether some brain regions show (anti-) correlations between functional connectivity with STN and motor symptoms. We used functional magnetic resonance imaging to investigate whole-brain resting-state functional connectivity with STN in 54 patients with PD and 55 HC matched for age, gender, and within-scanner motion. Compared to HC, we found attenuated negative STN-coupling with Crus I of the right cerebellum and with right ventromedial prefrontal regions in patients with PD. Furthermore, we observed enhanced negative STN-coupling with bilateral intraparietal sulcus/superior parietal cortex, right sensorimotor, right premotor, and left visual cortex compared to HC. Finally, we found a decline in positive STN-coupling with the left insula related to severity of motor symptoms and a decline of inter-hemispheric functional connectivity between left and right STN with progression of PD-related motor symptoms. Motor symptom related uncoupling of the insula, a key region in the saliency network and for executive function, from the STN might be associated with well-known executive dysfunction in PD. Moreover, uncoupling between insula and STN might also induce an insufficient setting of thresholds for the discrimination between relevant and irrelevant salient environmental stimuli, explaining observations of disturbed response control in PD. In sum, motor symptoms in PD are associated with a reduced coupling between STN and a key region for executive function.
منابع مشابه
Cerebellar atrophy in Parkinson's disease and its implication for network connectivity.
Pathophysiological and atrophic changes in the cerebellum are documented in Parkinson's disease. Without compensatory activity, such abnormalities could potentially have more widespread effects on both motor and non-motor symptoms. We examined how atrophic change in the cerebellum impacts functional connectivity patterns within the cerebellum and between cerebellar-cortical networks in 42 patie...
متن کاملAnatomical situation of the subthalamic nucleus (STN) from midcommissural point (MCP) in Parkinson\'s disease patients underwent deep brain stimulation (DBS): an MRI targeting study
Abstract Introduction: It is demonstrated that the degree of clinical improvement in Parkinson's disease (PD) achieved by deep brain stimulation (DBS) is largely dependent on the accuracy of lead placement. In addition, individual variability in the situation of subthalamic nucleus (STN) is responsible for spatial inter-individual fluctuations of the real patient's target. Objecti...
متن کاملDecisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity
Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergo...
متن کاملAbbreviated title: STN connectivity during vocal emotion Structural and Functional Connectivity of the Subthalamic Nucleus During Vocal Emotion Decoding
Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson's disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding th...
متن کاملResting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem
During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2016